7.sınıf fen ve teknoloji

ELEMENTLER VE BİLEŞİKLER


SAF MADDE: Kendisinden başka madde bulundur-mayan maddelere denir.
ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atom-lardır.
BİLEŞİK: En az iki farklı cins elementin belirli oranlarda bir araya gelerek, oluşturdukları yeni özellikteki maddeye denir. Yani bileşiklerin yapı taşı moleküldür.
MOLEKÜL: İki veya daha çok atomun bir araya gelerek oluşturduğu atom gruplarıdır.Elementler :
Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir.
Bir elementi oluşturan bütün atomların büyüklükleri ve atomların arasındaki uzaklık aynıdır. Fakat bir elementin atomları ile başka bir elementin atomlarının büyüklükleri ve atomların arasındaki uzaklıkları farklıdır. Aynı elementten yapılan farklı maddeler de aynı cins atomlardan oluşurlar.
Elementi oluşturan atomların birbirine olan uzaklığı elementin katı, sıvı ve gaz haline göre değişebilir.
Canlı ve cansız varlıkların tamamı elementlerden oluşurlar. Elementlerin Özellikleri :1- En küçük yapı birimleri atomlardır.
2- Aynı cins atomlardan oluşurlar.
3- Kendinden daha basit ve farklı maddelere ayrılamazlar.
4- Saf maddelerdir.
5- Sembollerle gösterilirler.Element Çeşitleri :Atomik Yapıdaki Elementler :
Bazı elementleri oluşturan aynı cins atomlar doğada tek başlarına bulunurlar. Böyle atomlara sahip elementlere atomik yapılı elementler denir. Atomik yapılı elementlerin en küçük taneciği atomlardır.Demir, bakır, alüminyum, çinko, kurşun, altın gibi elementler atomik yapılıdır.

Moleküler Yapıdaki Elementler :
Bazı elementleri oluşturan aynı cins atomlar doğada ikili (veya daha fazla sayıda atomdan oluşan karmaşık yapılı) gruplar halinde bulunurlar. Böyle atomlara sahip elementlere moleküler yapılı elementler denir. Moleküler yapılı elementlerin en küçük taneciği moleküllerdir.
 


ELEMENTLER VE SEMBOLLERİ:
Günümüzde bilinen 118 element vardır. Bu elementlerin 92 tanesi doğada bulunurken geri kalanı da laboratuarlarda elde edilen yapay elementlerdir.
Elementler sembollerle gösterilir ve her elementin kendine özgü sembolü vardır. Element sembolü yazılırken;
• Sembol tek harfli ise büyük harfle yazılır.
• Sembol iki veya üç harfli ise ilk harf daima büyük, diğer harfler küçük yazılır. (Sembollerin iki veya üç harften oluşmasının nedeni, bazı elementlerin baş harflerinin aynı olmasıdır).
Elementlerin sembollerle gösterilmesinin nedeni, bütün Dünya’da ortak bir bilim dili oluşturmak, bilimsel iletişimi ve yazımlarını kolaylaştırmaktır. Elementlerin bütün Dünya’da kullanılan sembolleri aynı olmasına rağmen isimleri dillere göre farklıdır. (Türkçe, Rusça, Çince, Japonca da element isimleri farklı olmasına rağmen sembolleri aynıdır).

Elementler ilk bulunduklarında bir kısmına elementlerin özelliklerini belirten bir isim (hidrojene Latincede su üreten anlamına gelen hydro–genes, oksijene Latincede asit yapan anlamına gelen oxygenium, fosfora Latincede ışık veren phosphorus), bir kısmına elementi bulan bilim adamının ismi (Albert Einstein–Aynştaynyum–Es, Gregor Mendel–Mendelevyum–Md, Rutherford–Rutherfordiyum–Rf, Andre Marie Curi– Küriyum–Cm), bir kısmına gezegen ve yıldızların isimleri (Neptün–Neptünyum–Np, Plüton–Plütunyum–Pu, Uranüs–Uranyum–U), bir kısmına da çeşitli kıta, şehir ve ülke isimleri (Avrupa–Europyum–Eu, Amerika–Amerikyum–Am, Kaliforniya–Kaliforniyum–Cf, Fransa– Fransiyum–Fr) verilmiştir.
Elementlerin sembolleri belirlenirken, elementlerin Latince isimlerinin ilk veya ilk iki (üç) harfi kullanılmıştır.
 

 

Tabloda ilk 20 elementin, numaraları, adları ve sembolleri gösterilmiştir. Bunları öğreniniz.
Elementler sembollerle gösterilir fakat sembollerden, o elementin atomik yapıda mı, moleküler yapıda mı olduğu anlaşılmaz. Moleküler yapıda olan elementlerin kaç atomdan oluştuğunun anlaşılması için formüller kullanılır:
Örneğin hidrojen, oksijen ve iyot elementleri iki atomludur. Kükürt 8, fosfor ise 4 atomludur.

Bazı elementlerin sembol ve formülleri

İsimleri ve formülleri verilen bileşiklerde hangi elementten kaç tane bulunduğunun gösterimi


 

Elementlerin Kullanım Alanları ve Özellikleri :

1- Hidrojen (H) :
• İlk olarak 1776 yılında Henry Cavendish tarafından keşfedilmiştir.
• Hidrojen ismi ise Antoine Lavoisier tarafından verilmiştir.
• Bilinen renksiz en hafif gazdır.
• Suyun, canlıların ve petrol gibi birçok maddenin yapısında bulunur.
• Roket yakıtı olarak kullanılır.

2- Helyum (He) :
• 1868 yılında Fransız Pierre Janssen ve İngiliz Norman Lockyer birbirinden bağımsız olarak helyumu keşfetmişlerdir.
• 1908 yılında Heike Kamerlingh Onnes ilk sıvı helyumu elde etmiştir.
• Helyum atmosferde çok az miktarda bulunur.
• Güneş’te ve diğer yıldızlarda bol miktarda bulunur.
• Renksiz bir gazdır.
• Zeplin ve balon gibi hava taşıtlarının şişirilmesinde, roket yakıtlarının sıkıştırılmasında kullanılır. (Havadan daha hafif gaz olması nedeniyle).

3- Lityum (Li) :
• İlk olarak 1817 yılında Johann Arvedson tarafından keşfedilmiştir.
• Gümüşümsü gri metalik renkte bulunan katı bir elementtir.
• İlaçlarda, pil üretiminde, seramik ve cam yapımında kullanılır.

4- Berilyum (Be) :
• 1828 yılında birbirlerinden bağımsız olarak Friedrich Wöhler ve Antony Bussy tarafından elde edilmiştir.
• Gri renklidir katıdır.
• Uçak ve uzay araçlarının yapımında elektrik ve ısı iletkeni olarak kullanılır.

5- Bor (B) :
• 1808 yılında Humphry Davy, Gay–Lussac ve Thenard tarafından ilk defa elde edilmiştir.
• Oda koşullarında katı halde bulunur.
• Isıya dayanıklı renkli cam imalatında, seramiklerde ve roket yakıtlarında kullanılır.

6- Karbon (C) :
• Saf haldeyken karbon, elmas, grafit, is, kömür gibi (4 tane allotropu vardır) birçok çeşitli maddelerde bulunur.
• Grafitin yapısı siyah, elmasın yapısı ise renksiz bir katıdır.
• Yeryüzünde kömür, petrol, doğal gaz gibi maddelerin ve canlıların yapısında bulunup canlılar açısından çok önemlidir.

7- Azot (N) :
• Azot ilk olarak 1772 yılında Daniel Rutherford tarafından keşfedildi.
• Renksiz ve kokusuz bir gazdır.
• Canlılar için gerekli temel elementlerden biridir.
• Sıvı azot soğutma amacıyla kullanılır.
• Bazı azot bileşikleri tarımda gübre olarak kullanılır.

8- Oksijen (O) :
• Oksijen ilk olarak 1774 yılında Joseph Priestley ve Carl Wilhelm Scheele tarafından keşfedilmiştir.
• 1781 yılında Lavosier, oksijenin havada bulunan ve yanmaya etki eden bir madde olduğunu keşfetmiştir.
• Renksiz bir gazdır.
• Canlıların yaşaması için gerekli temel elementtir.
• Dalgıçların ve astronotların solunum yapmaları için kullandıkları oksijen tüplerinde bulunur.

9- Flor (F) :
• İlk defa 1886 yılında Henri Moissan tarafından elde edilmiştir.
• Açık sarı renkli bir gazdır.
• Diş macunları ve deodorantların yapısında bulunur.
• Buzdolabı ve klimaların soğutma sisteminin çalışmasında kullanılır.

10- Neon (Ne) :
• Neon 1898 yılında William Ramsay ve Morris Travers tarafından keşfedilmiştir.
• Renksiz bir gazdır.
• Renkli reklam panolarının aydınlatılmasında ve televizyon tüplerinde kullanılır.

11- Sodyum (Na) :
• Sodyum ilk olarak 1877 yılında Humphrey Davy tarafından elde edilmiştir.
• Yumuşak, kaygan bir metal olup gümüşümsü beyaz renkli bir katıdır.
• Doğada en çok sofra tuzunun (sodyum klorürün) yapısında bulunur.
• Kağıt, gıda, tekstil, kimya, sabun, cam ve metal gibi bir çok endüstriyel kullanılır.

12- Magnezyum (Mg) :
• 1755 yılında İngiltereli Joseph Black tarafından ilk olarak keşfedilmiştir.
• Gümüşümsü beyaz renkli bir metaldir.
• Oda koşullarında katı halde bulunur.
• Hafif bir metal olduğu için hava taşıtlarının yapımında kullanılır.
• Kurutulmuş meyvelerde bulunur.

13- Alüminyum (Al) :
• 1827 yılında Wohler tarafından bulunmuştur.
• Alüminyum yumuşak ve hafif bir metaldir.
• Mat, gümüşümsü renkli bir katıdır.
• Mutfak araç gereçlerinin, elektrik kablolarının ve içecek kutularının yapımında kullanılır.

14- Silisyum (Si) :
• Silisyumun ilk keşfi 1824 yılında Berzelius tarafından gerçekleştirilmiştir.
• Yeryüzünde en fazla bulunan elementlerden biridir.
• Koyu gri renkli bir katıdır.
• Kumda, kilde, cam yapımında ve yapı malzemelerinde bulunur.

15- Fosfor (P) :
• Fosfor ilk olarak 1669 yılında Hennig Brand tarafından keşfedildi.
• Fosfor renksiz, beyaz, kırmızı ve siyah renklerinde bulunabilir.
• Oda koşullarında katı halde bulunur.
• Canlıların sinir ve kemik dokularında görevlidir.
• Suni gübre yapımında kullanılır.
16- Kükürt (S) :
• Kükürt, antik çağda bilinen dokuz elementten biriydi. Kükürdün kimyasal bir element olduğunu 1777’de Lavoisier ortaya attı. 1810 yılında Gay Lussac ile Thenard tarafından deneysel olarak doğrulandı.
• Sarı renkli tatsız, kokusuz bir maddedir.
• Oda koşullarında katı halde bulunur.
• Isı ve elektriği iyi iletemez.
• Barut ve sülfürik asit yapımı ile kuru meyvelerde mikrop öldürücü olarak kullanılır.

17- Klor (Cl) :
• Klor ilk olarak 1774 yılında Carl Wilhelm Scheele tarafından keşfedildi. 1810 yılında ise Humphry Davy tarafından bugünkü ismi verildi.
• Sarı–yeşil renkli zehirli bir gazdır.
• Doğada en çok sofra tuzunun yapısında bulunur.
• İçme sularında mikrop öldürücü olarak bulunur.

18- Argon (Ar) :
• 1785 yılında havada argon olduğu ilk defa Henry Cavendish tarafından iddia edilmiş ve 1894 yılında Lord Rayleigh ve William Ramsay tarafından keşfedilmiş.
• Kokusuz ve renksiz bir gazdır.
• Ampullerde ve flüoresan tüplerinde kullanılır.

19- Potasyum (K) :
• Potasyum ilk olarak 1807 yılında Humphrey Davy tarafından elde edilmiştir.
• Gümüşümsü beyaz renkli bir katıdır.
• Sıvı deterjan, gübre, barut, cam ve lens yapımında kullanılır.

20- Kalsiyum (Ca) :
• İlk olarak 1808 yılında Berzelius ve Pontin tarafından, daha sonra saf olarak ilk defa Humphry Davy tarafından elde edilmiştir.
• Gümüş gibi parlak ve beyaz renkli bir katıdır.
• Çimento, alçı, kireç gibi maddeler ile dişlerin ve kemiklerin yapısında bulunur.

21- Gümüş (Ag) :
• Gümüş elementinin keşfi tam olarak bilinmemekle birlikte altın ve bakır elementlerinden sonra keşfedilmiştir. Gümüşün MÖ 2500 yıllarında Çinliler ve Persler tarafından kullanıldığı belirtilmiştir.
• Parlak, beyaz renkli bir katıdır.
• Süs eşyası yapımında, diş dolgusu (amalgam) yapımında kullanılır.

22- Altın (Au) :
• Tarihte bilinen kayıtlara göre Mısır hükümdarları zamanında MÖ 3200 yıllarında, altın darphanelerde eşit boyda çubuklar halinde çekilerek para olarak kullanıldı.
• Yumuşak, parlak sarı renkli bir katıdır.
• Süs eşyası yapımında kullanılır.

23- Cıva (Hg) :
• Cıva çok uçucu bir element olduğu için oda sıcaklığında kolayca buharlaşabilir.
• Gümüşümsü gri renkli bir sıvıdır.
• Zehirli bir elementtir.
• Herhangi bir yüzeye cıva döküldüğü zaman üzerine toz kükürt dökülmelidir.
• Diş dolgusu (amalgam) yapımında ve termometrelerde kullanılır.

24- Bakır (Cu) :
• Tarihte ilk defa 10.000 yıl kadar önce Kıbrıs’ta rastlanmıştır.
• Turuncu renkli yumuşak bir katıdır.
• Mutfak ve süs eşyası yapımında kullanılır.

25- Nikel (Ni) :
• Nikel elementi ilk olarak 1751 yılında Axel Fredric Cronstedt tarafından keşfedilmiştir.
• Gümüşümsü parlak renkli bir katıdır.
• Arabaların kaplamalarında, musluklarda ve paslanmaz tencere yapımında nikel kullanılır.

26- İyot (I) :
• İyot elementi ilk kez Bernard Courtois tarafından 1811 yılında keşfedilmiştir.
• Parlak, menekşe–siyah renkli bir katıdır.
• Deniz ürünlerinde ve iyotlu sofra tuzlarında bol miktarda bulunur.

27- Çinko (Zn) :
• Çinko elementi 1746 yılında Andreas Maggart tarafından keşfedilmiştir.
• Mavimsi, açık gri renkte, kırılgan bir katıdır.
• Mutfak eşyalarının ve pilin yapımında kullanılır.

28- Demir (Fe) :
• Demir metalinin keşfi tam olarak bilinmemektedir.
• Grimsi parlak renkli bir katıdır.
• Element halindeki saf demir dövülebilir, ince tel ve levha haline getirilebilir.
• İnşaat malzemesi ile günlük hayatta kullanılan bazı eşyaların yapımında kullanılır.
• Marul ve pekmez gibi besinlerle kanın yapısında bulunur.

29- Kalay (Sn) :
• MÖ 3000 yıllardan beri kullanılan bir elementtir.
• Gümüşümsü parlak renkli bir katıdır.
• Mutfak eşyası yapımında ve metallerin kaplanmasında kullanılır.

30- Kurşun (Pb) :
• Keşfi tam olarak bilinmemektedir.
• Mavimsi–beyaz renkte bulunan bir katıdır.
• Yumuşak, ağır, zehirleyici, kolay dövülebilen bir maddedir.

NOT : 1- Elementi oluşturan taneciklerin renkleri, elementlerin renkleriyle aynı olmayabilir.
Taneciklerin renkleri yoktur. Tanecikler bir araya gelerek elementleri oluşturduklarında yani elementler görünür boyuta ulaştıklarında renkli görünürler.
2- Farklı maddeler de aynı elementlerden oluşabilir yani farklı maddelerde aynı cins elemenler bulunabilir. Ispanak ve bezelyede bulunan demir atomlarıyla, demir parçasında bulunan demir atomları aynı atomlardır.
3- Doğada bilinen 118 element olmasına rağmen bu elementler farklı şekillerde bir araya gelerek milyonlarca yeni madde yani bileşik elde edilir.

Doğada Kullanılan Elementlerin Benzerliği :
Doğadaki canlı ve cansız varlıkların tamamı elementlerden oluşur. Canlı varlıkları oluşturan elementlerden bir kısmı aynı zamanda yeryüzünün yapısını da oluşturur. Aynı elementlerden oluştukları halde canlı vücudu, yeryüzü veya diğer maddelerin yapısı arasında farklılıkların bulunmasının nedeni, canlı vücudunu, yeryüzünü veya diğer maddeleri oluşturan elementlerin farklı sayı, çeşit ve şekillerde dizilmesidir.

Canlı Vücudunu Oluşturan Element Çeşitleri ve Bunların Oranları :
• Oksijen → % 65
• Karbon → % 18
• Hidrojen → % 10
• Azot → % 3
• Kalsiyum → % 2
• Fosfor → % 1,1
• Potasyum → % 0,35
• Kükürt → % 0,25
• Sodyum → % 0,15
70 Kg Kütleli İnsandaki Elementlerin Miktarları :

Yeryüzünde Bulunan Elementlerin Oranları :
• Oksijen → % 46,6
• Silisyum → % 27,7
• Alüminyum → % 8,1
• Demir → % 5,0
• Kalsiyum → % 3,6
• Sodyum → % 2,8
• Potasyum → % 2,6
• Magnezyum → % 2,1

ATOMUN YAPISI

ATOMUN YAPISI
Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.
Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:
* Cisimden cisme elektrik yüklerini taşıyan negatif yüklü elektron,
* Elektronların yükünü dengeleyen aynı sayıda ama pozitif yüklü olan proton,
* Elektrik yükü taşımayan nötr parcacık nötron.Atom iki kısımdan oluşur :
1-Çekirdek (merkez) ve 2-Katmanlar (yörünge; enerji düzeyi)
Çekirdek, hacim olarak küçük olmasına karşın, atomun tüm kütlesini oluşturur. Çekirdekte proton ve nötronlar bulunur. Elektronlar ise çekirdek çevresindeki katmanlarda bulunur.

Tanecik adı Sembol Elektrik yükü  Kütle (kg)
Proton P+ +  1,6725.10-27 kg
Elektron e- -  9,107.10-31 kg
Nötron n0 0  1,6748.10-27 kg

Elektronların çekirdek etrafında dönme hızı, 2,18.108 cm/sn’dir.
Elementlerin Çekirdekte bulunan protonlar, atomun ( o elementin) tüm kimyasal ve fiziksel özelliklerini belirler.

Proton sayısı atomlar (elementler) için ayırt edici özelliktir. Yani proton sayısının farklı olması elementin diğerinden farklı olduğu anlamına gelir.
Elektronların bulunma olasılığının olduğu bölgelere elektron bulutu denir.
Kimyasal olaylarda (reaksiyonlarda) yalnızca elektron sayısı değişir. Proton ve nötron, çekirdekte bulunduğu için sayıları değişmez.
Nötr bir atom için; elektron sayısı= proton sayısı
(A.N.) Atom numarası= proton sayısı
Çekirdek yükü= proton sayısı
İyon yükü= proton sayısı – elektron sayısı (E.S.)
(K.N.) Kütle numarası= proton + (N.S)nötron sayısı (Nükleon sayısı)(atom ağırlığı)

Atom Numarası = Proton Sayısı = Çekirdek Yükü = Elektron Sayısı

İzotop atom: Proton sayıları (atom numaraları)aynı, nötron sayıları farklı olan atomlara denir.
İzotop atomların kimyasal özellikleri aynı (p aynı) , fiziksel özellikleri farklıdır (n farklı).
Nötr halde bulunmayan, iyon halindeki izotop atomların hem fiziksel, hem kimyasal özellikleri farklıdır.

Atom Modelleri :
Atom gözle veya en gelişmiş elektron mikroskopları ile bile görülemez. Maddenin kütlei olduğu halde maddeyi oluşturan atomların tek tek kütleleri ölçülemez ve atomlar duyu organları tarafından algılanamaz.
Eski çağlardan günümüze kadar gözle görülemeyen atom hakkında çeşitli bilim adamları deneyler yapmışlar, atom hakkında elde ettikleri bilgileri açıklamak için çeşitli bilimsel modeller ortaya koymuşlardır. Atom hakkında ortaya konan her yeni model bir önceki modelin eksikliğini gidermiştir. Atom hakkında yapılan yeni deneyleri açıklayamayan modelin yerine de yeni bir model geliştirilmiştir.
Eski atom modellerinin bugün geçerli olmamasının nedeni, o modelleri geliştiren bilim adamlarının iyi düşünememesinden değil, o dönemde bilinenlerin bugün bilinenlere göre daha az olmasından kaynaklanır. (Dalton atom modeli açıklandığında o dönemde bilinenler dikkate alındığında o modeli geliştirmek, Bohr atom modelini geliştirmekten daha zordu).
Atom hakkında Democritus, Dalton, Thomson, Rutherford, Bohr ve De Broglie isimli bilim adamları ve filozoflar görüşlerini ortaya koymuşlar ve günümüzdeki atom modeli ortaya çıkmıştır. Günümüzde kullanılan atom modeli Modern Atom Teorisi sonucu ortaya konmuştur ve bugünkü model, yeni bir model bulununcaya kadar geçerliliğini sürdürecektir.

a) Democritus Atom Modeli (Democritus–M.Ö. 400) :
Atom hakkında ilk görüş M.Ö. 400’lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. (Teosta yaşamıştır). Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere atom adını vermiştir. Democritus, atom hakkındaki görüşlerini deneylere göre değil varsayımlara göre söylemiştir. Democritus’ a göre;
• Madde parçalara ayrıldığında en sonunda bölünemeyen bir tanecik elde edilir ve bu tanecik atomdur.
• Bütün maddeler aynı tür atomlardan oluşur.
• Maddelerin farklı olmasının nedeni maddeyi oluşturan atomların sayı ve dizilişi biçiminin farklı olmasıdır.
• Atom görülemez.
• Atom görülemediği için bölünemez.

b) Dalton Atom Modeli (John Dalton 1766–1844) :
Atom hakkında ilk bilimsel görüş 1803 – 1808 yılları arasında İngiliz bilim adamı John Dalton tarafından ortaya atılmıştır. Dalton’ a göre;
• Maddenin en küçük yapı taşı atomdur. (Maddeler çok küçük, bölünemez, yok edilemez berk taneciklerden oluşur.)
• Atom parçalanamaz.
• Atom içi dolu küre şeklindedir.
• Bütün maddeler farklı tür atomlardan oluşmuştur.
• Maddelerin birbirlerinden farklı olmasının nedeni maddeyi oluşturan atomların farklı özellikte olmasıdır.
• Bir maddeyi oluşturan atomların tamamı birbirleriyle aynı özelliklere sahiptir.

NOT : 1- Madde fiziksel veya kimyasal değişmeye uğradığında atomlar varlıklarını korurlar,
parçalanmaz ve yeniden oluşturulamazlar.
2- Kimyasal olaylar atomların birleşmesi veya ayrılması sonucu oluşur. Atomlar birleşerek molekülleri oluşturur. Bir bileşiğin molekülleri tamamen birbirinin aynısıdır.
3- Dalton İngiltereli bir kimyacı olup daha çok maddenin yapısını açıklayan atom teorisiyle ün kazanmıştır. Bunun yanında gazların bir takım özellikleriyle ve özellikle kısmi basınçlarıyla ilgili çalışmalarda yapmıştır.
4- Birçok elementin atomlarının ağırlıklarını kendi ilkel ortamında çalışarak ölçmeye çalışmış ve bu ağırlıklarla ilgili bir tablo yapmıştır. Ancak daha sonra gelişen teknik ve teknolojiyle bilim adamları tarafından atomların ağırlıklarını yeniden ölçülmüş ve Dalton’un hazırladığı bu tablonun hatalı olduğu ortaya çıkmıştır.
5- Sabit oranlar kanunu ve katlı oranlar kanunu olarak gördüğümüz bileşiklerdeki kütlesel ilişkilere bakarak 1803 yılında John Dalton, maddelerin çok çok küçük yapı taşlarının topluluğu halinde bulunduğu, fikrini ileri sürdü Dalton atom teorisi olarak ortaya konular temel özellikler şunlardır.
• Aynı elementin atomları biçim, büyüklük, kütle ve daha başka özellikler bakımından aynıdır. Ancak bir elementin atomları başka bir elementin atomlarından farklıdır.
• Atomlar belli sayılarda birleşerek molekülleri oluştururlar. 1 atom X ile 1 atom Y den XY, 1 atom X ile 2 atom Y den XY2 bileşiği oluşur. Oluşan bileşikler ise standart özellikleri moleküller topluluğudur.
• Farklı cins atomlar farklı kütlelidir.
6- Atomla ilgili günümüzdeki bilgiler dikkate alındığında Dalton atom teorisinde üç önemli yanlış hemen fark edilir:
• Atomlar içi boş küreler değildir. Boşluklu yapıdadırlar.
• Aynı cins elementlerin atomları tam olarak aynı değildir. Kütleleri farklı (izotop) olanları vardır.
• Maddelerin en küçük parçasının atom olduğu ve atomların parçalanamaz olduğu doğru değildir. Radyoaktif atomlar daha küçük parçalara ayılarak daha farklı kimyasal özellikte başka atomlara ayrışabilir; proton, nötron, elektron gibi parçacıklar saça bilirler.

c) Thomson Atom Modeli (John Joseph Thomson 1856–1940) :
Atomun yapısı hakkında ilk model 1897 yılında Thomson tarafından ortaya konmuştur. Thomson atom modeli bir karpuza ya da üzümlü keke benzer. Thomson’ a göre;
• Atom küre şeklindedir. (Çapı 10–8 cm)
• Atomda (+) ve (–) yüklü tanecikler bulunur.
• Thomson’a göre atom; dışı tamamen pozitif yüklü bir küre olup negatif yüklü olan elektronlar kek içerisindeki gömülü üzümler gibi bu küre içerisine gömülmüş haldedir.
• Atomlar, daha küçük taneciklerden oluştuğu için parçalanabilirler.

NOT : 1- İngiliz fizik âlimlerinden biri olup, elektronlar hakkındaki çalışmalardan dolayı 1906
da Nobel fizik ödülünü almıştır. 1885’te içi boş bir cam tüp içerisinden elektrik akımları üzerinde çalışırken ışınları tüpün negatif (katot) kutbundan geldiğini görmüş ve ilk defa katot ışınlarını bulmuştur. Böylece elektronları da bulmuştur. Ve sonuç olarak elektronların her atomun tabiatında var olan temel parçacıklar olduğunu söylemiştir.
2- Dalton atom modelinde (–) yüklü elektronlardan ve (+) yüklü protonlardan söz edilmemiştir. Yapılan deneyler yardımıyla; katot ışınlarından protonun varlığını ortaya koymuştur. Thomson atom altı parçacıklar üzerinde çalışmalar yaparken icat ettiği katot tüpü yardımıyla 1887 yılında elektronu keşfinden sonra kendi atom modelini ortaya attı
3- Elektronların kütlesi pozitif yüklerin kütlesinden çok küçüktür. Bu nedenle atomları başlıca pozitif yükler oluşturur.
4- Atomda elektriksel dengeyi sağlamak için pozitif yük sayısına eşit sayıda elektron küre içinde dağılmıştır.
5- ELEKTRON’UN KEŞFİ
Maddenin yapısına ilk olarak modern yaklaşım Thomson’un katot ışınlarını inceleyerek elektronun keşfi ile başlar. Thomson: elektriksel gerilim uygulanan katot ışınları tüpünde katot ışınların negatif kutup tarafından itildiğini pozitif kutba doğru çekildiğini tespit etti.
Aynı cins elektrik yüklerinin bir birini itmesi ve farklı yük elektrik yüklerinin birbirini çekmesi nedeniyle Thomson katot ışınlarının negatif elektrik yüklerinden olduğu sonucu çıkardı.
Thomson deneyinde katot için farklı madde kullandığında ve deney tüpünün farklı gazla doldurulduğunda da katot ışınlarının aynı davranışta bulunduğunu gördü. Böylece elektronun maddenin cinsinin karakteristik bir özelliği olmadığını bütün atom cinsleri için elektronun her birinin aynı olduğunu neticesini ortaya koydu.
Elektron negatif yüklü olduğundan elektriksel alanda pozitif kutba doğru saparlar. Elektriksel alandaki bu sapmalar taneciğin yükü (e)ile doğru, kütlesi(m) ile ters orantılıdır. Yükün kütleye oranı (e/m) bir elektrik alanı içinde elektronların doğrusal yoldan ne kadar sapacağını gösterir.
6- PROTONUN KEŞFİ
Katot tüpleriyle elektron elde edildiği gibi, elektrik deşarj (boşalma ) tüpleri ile de pozitif iyonlar elde edilir. Bu tüplerde uygulanan yüksek gerilim sonucunda atomdan elektronlar koparılarak pozitif iyonlar oluşturulur. Oluşan bu pozitif iyonlar bir elektriksel alanda elektronun ters yönünde hareket ederek negatif elektrota (katota) doğru ilerler. Bu iyonların büyük bir kısmı hareketleri sırasında ortamdaki elektronlara çarparak nötral atomlar oluştururlar. Çok az bir kısmı ise yollarına devam ederek katota erişirler. Eğer ortası delikli bir katot kullanılırsa, pozitif parçacıklar delikten geçerler. Bu ışınlara pozitif iyonlar ya da kanal ışınları denir.
Pozitif iyonlar için e/m nin saptanmasında katot ışınlarının incelenmesinde kullanılan yöntemin hemen hemen aynısı kullanıldı. Katot ışınlarında katot maddesi ne olursa olsun elde edilen ışınların e/m oranı hep aynı bulunmuştu. Oysa pozitif ışınlarda elde edilen e/m oranı tüpteki gazın oranına göre farklı olduğu bulundu
7- Protonlar ve elektronlar yüklü parçacıklardır. Bunlar yük bakımından eşit, işaretçe zıttılar. Protonlar +1 birim yüke, elektron ise –1 birim yüke eşittir.
8- Nötr bir atomda proton sayısı elektron sayısına eşit olduğundan yükler toplamı sıfıra eşittir.
9- Atom yarı çapı 10-8 cm olan bir küre şeklindedir. Söz konusu küre içerisinde proton ve elektronlar atomda rasgele yerlerde bulunurlar. Elektronun küre içindeki dağılımı üzümün kek içindeki dağılımına benzer.
10- Elektronların kütlesi ihmal edilebilecek kadar küçüktür. Bu nedenle atomun ağırlığını büyük ölçüde protonlar teşkil eder.
11- • Nötron denilen parçacıklardan bahsedilmemesi Thomson atom teorisinin
eksikliklerinden biridir.
• Proton ve elektronların atomda rasgele yerlerde bulunduğu iddiası ise teorinin hatalı yönüdür.

d) Rutherford Atom Modeli (Ernest Rutherford 1871–1937) :
Atomun çekirdeğini ve çekirdekle ilgili birçok özelliğin ilk defa keşfeden bir bilim adamı Rutherforddur.
• Atom kütlesinin tamamına yakını merkezde toplanır, bu merkeze çekirdek denir.
• Atomdaki pozitif yüklere proton denir.
• Elektronlar çekirdek etrafında gezegenlerin Güneş etrafında dolandığı gibi dairesel yörüngelerde sürekli dolanırlar. Çekirdekle elektronlar arasında çekim kuvveti olduğu için elektronların çekirdeğe düşmemeleri için dolanmaları gerekir. (Yörünge daire şeklinde değil, enerji seviyesine karşılık gelen orbitallerde dolanır).
• Elektronların bulunduğu hacim çekirdeğin hacminden çok büyüktür.
• Çekirdekteki protonların sayısı (yük miktarı) bir maddenin bütün atomlarında aynı, fakat farklı maddenin atomlarında farklıdır.
• Çekirdekteki proton (yük) sayısı, elektron sayısına eşittir.
• Çekirdekteki pozitif yüklerin kütlesi yaklaşık atom kütlesinin yarısına eşittir.

NOT : 1- Yeni Zellanda’da doğmuş ve başarılı bir öğrenci olduğundan 1894 yılında
İngiltere’ye gelmiştir. İlk önceleri elektromanyetik radyasyon hakkında çalışmalar yapmıştır. Daha sonraları ilgisini X ışınlarına ve radyoaktiviteye çevirmiştir. Farklı tipte elektromanyetik radyasyonların varlıklarını ortaya atmış bunlara ilk defa , ve  sembolleri ve isimlerini vermiştir. Devamla  ışımasının helyum çekirdeği,  ışımasının ise elektron içerdiğini bulmuş ve bu çalışmasından dolayı 1908 yılında kimya Nobel ödülü almıştır.
2- 1911 yılında atomun kütlesinin çoğunu içine alan çok küçük bir merkezinin olduğunu ortaya attı ve buna çekirdek adını verdi.
3- Atomun yapısının açıklanması hakkında önemli katkıda bulunanlardan biride Ernest Rutherford olarak bilinir. Rutherford’dan önce Thomsan atom modeli geçerliydi bu kurala göre atom küre şeklindedir. Ve küre içerisinde proton ve elektronlar bulunur. Acaba bu proton ve elektronlar atom içerisinde belirli bir yere mi yoksa rast gele mi dağılım içerisinde mi bulunuyordu? Bu sorunun cevabı daha bulunamamıştı. Rutherford bu sorunun cevabı ve Thomson atom modelinin doğruluk derecesini anlamak için yaptığı alfa () parçacıkları deneyinde bir model geliştirdi
4- Polonyum ve radyum bir - ışını kaynağıdır. Rutherford bir radyoaktif kaynaktan çıkan - taneciklerini bir demet halinde iğne ucu büyüklüğündeki yarıktan geçirdikten sonra kalınlığı 10-4 cm kadar olan ve arkasında çinko sülfür (ZnS) sürülmüş bir ekran bulunan altın levha üzerine gönderdi. Altın levhayı geçip ekran üzerine düşen  – parçacıkları ekrana sürülen ZnS üzerine ışıldama yaparlar. Böylece metal levhayı geçen  – parçacıklarını sayma imkanı elde edilmiş olunur. Rutherford yaptığı deneyde metal levha üzerine gönderilen  – parçacıklarının 99,99 kadarının ya hiç yollarında sapmadan ya da yollarında çok az saparak metal levhadan geçtiklerini, fakat çok az bir kısmının ise metale çarptıktan sonra büyük bir açı yaparak geriye döndüklerini gördü. Rutherford daha sonra deneyi altın levha yerine kurşun, bakır ve platin levhalar üzerinde denedi. Hepsinde de aynı sonuç ortaya çıktığını gördü.
Kinetik enerjisi çok yüksek olan çok hızlı olarak bir kaynaktan çıkan  – parçacıklarının geriye dönmesi için;
1- Metal levhada pozitif kısmın olması
2- Bu pozitif yüklü kısmın kütlesinin (daha doğrusu yoğunluğunun) çok büyük olması gerekir.
Bu düşüncelerden harekele Rutherford bu deneyden şu sonucu çıkardı:
• Eğer  – tanecikleri atom içerisinde ki bir elektrona çarpsaydı kinetik enerjileri büyük olduğu için elektronu yerinden sökerek yoluna devam edebilirdi. Ayrıca a – taneciği pozitif, elektron olduğundan söz konusu almaması gerekliydi. Bu düşünceyle hareket eden Rutherford metale çarparak geriye dönen a – parçacıklarının sayısı metal levhadan geçenlere oranla çok küçük olduğundan atom içerisinde pozitif yüklü ve kütlesi büyük olan bu kısmın hacmi, toplam atom hacmine oranla çok çok küçük olması gerektiğini düşünerek, bu pozitif yüklü kısma çekirdek dedi.
• Rutherford atomun kütlesini yaklaşık olarak çekirdeğin kütlesine eşit olduğu ve elektronlarda çekirdek etrafındaki yörüngelere döndüğünü ileri sürmüştür. Buna göre Rutherford atomu güneş sistemine benzetmiş oluyor. Rutherford atom modelini ortaya koyduğunda nötronların varlığı daha bilinmiyordu Günümüzde ise çekirdeğin proton ve nötronlar içerdiği ve bunların çekirdeğin kütlesini oluşturduklarına inanılmaktadır. Rutherford’un ortaya koyduğu atom modelinin boyutlarını da anlamak önemlidir. Bunu şu şekilde ifade edebiliriz. Eğer bir atomun çekirdeği Bir tenis topu büyüklüğünde olsaydı, bu atom büyük bir stadyum büyüklüğünde olurdu.

e) Bohr Atom Modeli (Niels David Bohr 1875–1962) :
Bohr atom teorisi hidrojenin yayınma spektrumuna dayanılarak açıklanır. Bohr’ a göre;
• Elektronlar çekirdek etrafında belirli uzaklıklardaki katmanlarda dönerler, rasgele dolanmazlar.
• (Yüksek enerji düzeyinde bulunan elektron, düşük enerji düzeyine geçerse fotonlar halinde ışık yayarlar).
• (Kararlı hallerin tamamında elektronlar çekirdek etrafında dairesel yörünge izlerler).

NOT : 1- Bohr, Danimarkalı bir fizikçidir. Doktorasını bu şehirde bitirdikten sonra 1911
yılında J.J. Thomson ile birlikte çalışmak için İngiltere’ye gitti. Birkaç yıl içinde ciddi ve başarılı çalışmalarda bulunarak atomların yapısını ve spektrumların açıklanışı hakkında teorisini ortaya koymuş ve kitap halinde yayınlamıştır. Daha sonra Kopenhag’a geriye dönmüş ve orada teorik fizik enstitüde yöneticilik yapmıştır. Bu enstitüde gerek kimya ve gerek fizik dalında birçok Nobel ödülü kazanmış olan W. Heisenberg, W.Pouli ve L. Pauling gibi birçok genç bilim adamı yetiştirmiştir. Atomun ilk kuantum modelini önerdi. Kuantum mekaniğinin ilk gelişmesinde aktif olarak katıldı ve bu konuda pek çok felsefi çalışmalar yaptı. Çekirdek fiziğine, çekirdeğin sıvı damlası modelinin geliştirilmesinde büyük rol oynadı. Atomların yapısı ve onlardan yayılan ışınım üzerine yaptığı çalışmalar için 1922′de fizikte Nobel ödülünü kazandı.
Buraya kadar anlatılan atom modellerinde atomun çekirdeğinde (+) yüklü proton ve yüksüz nötronların bulunduğu, çekirdeğin etrafında dairesel yörüngelerde elektronların dolaştığı ifade edildi. Bu elektronların çekirdek etrafında nasıl bir yörüngede dolaştığı, hızı ve momentumlarının ne olduğu ile ilgili bir netice ortaya konmadı. Bohr ise atom teorisinde elektronların hareketini bu noktadan inceledi.
• Bir atomdaki elektronlar çekirdekten belli uzaklıkta ve kararlı hâllerde hareket ederler. Her kararlı halin sabit bir enerjisi vardır.
• Her hangi bir enerji seviyesinde elektron dairesel bir yörüngede (orbitalde) hareket eder. Bu yörüngelere enerji düzeyleri veya kabukları denir.
• Elektronlar kararlı hallerden birinde bulunurken atomdan ışık (radyasyon) yayılmaz. Ancak yüksek enerji düzeyinden daha düşük enerji düzeyine geçtiğinde, seviyeler arasındaki enerji farkına eşit bir ışık kuantı yayınlar. Bunlara E=h.ν bağıntısı geçerlidir.
• Elektron hareketinin mümkün olduğu kararlı seviyeler K, L, M, N, O gibi harflerle veya en düşük enerji düzeyi 1 olmak üzere her enerji düzeyi pozitif bir tam sayı ile belirlenir ve genel olarak “n” ile gösterilir. (n : 1,2,3, …∞ )
Bugünkü atom modelimize göre : Borh kuramını elektronların dairesel yörüngelerde hareket ettiği, ifadesi yanlıştır.
2- 1913′te Danimarkalı fizikçi Niels Bohr (1885-1962), hidrojen atomunun tayf çizgilerini kuantum kuramına dayanarak açıkladı. Buna göre çekirdek çevresindeki elektron, her enerjiyi değil, ancak belirli enerjileri alabiliyordu. En düşük enerjili durumdaki atoma temel durumdaki atom, enerji verilmiş atomlara da uyarılmış atom denir. Elektron yüksek enerjili durumdan daha düşük enerjili duruma sıçrayarak düşer, bu sırada ışık yayınlanır. Bohr modeli hidrojen atomunun yanı sıra bir elektronlu helyum(+1 yüklü helyum iyonu) ve lityum iyonu (+2 yüklü lityum iyonu) tayf çizgilerine başarıyla uygulandı.Ancak bu model çok elektronlu atomların davranışlarını açıklayamadığından yaklaşık 12 yıl geçerli kaldı. Bununla birlikte,kuram çok elektronlu atom ve iyonların karmaşık tayf çizgilerini açıklamakta yetersiz kaldı Daha sonra yerini Modern atom modeli aldı.
Bohr’a göre elektronlar çekirdek belirli uzaklıklarda dairesel yörüngeler izler. Çekirdeğe en yakın yörüngede bulunan ( n = 1 ) K tabakası en düşük enerjilidir Çekirdekten uzaklaştıkça tabakanın yarı çapı ve kabukta bulunan elektronun enerjisi artar.Elektron çekirdekten sonsuz uzaklıkta iken ( n = ∞ ) elektronla çekirdek arasında çekim kuvveti bulunmaz. Bu durumda elektronun potansiyel enerjisi sıfırdır. Elektron atomdan uzaklaşmış olur. Bu olaya iyonlaşma denir
Elektron çekirdeğe yaklaştıkça çekme kuvveti oluşacağından, elektronun bir potansiyel enerjisi oluşur. Elektron çekirdeğe yaklaştıkça atom kararlı hale gelir, potansiyel enerjisi azalır. Buna göre elektronun her enerji düzeyindeki potansiyel enerjisi sıfırdan küçük olur. Yani negatif olur. Bohr hidrojen atomunda çekirdeğe en yakın enerji düzeyinde K yörüngesi ) bulunan elektronun enerjisini –313,6 kkral/mol olarak bulmuştur.

f) Modern Atom Teorisi :
Günümüzde kullanılan atom modeli, modern atom teorisi sonucu ortaya konmuştur. Bu teoriye göre elektronlar çok hızlı hareket ettikleri için belirli bir yerleri yoktur. Yani elektronların bulunduğu kabuk kavramı yanlış bir kavramdır. Elektronların sadece bulunma ihtimalinin olduğu bölgeler bilinebilir ve elektronların bulunma ihtimalinin olduğu bölgelere elektron bulutu denir. (Elektronların yörüngeleri kesin olarak belli değildir).

NOT : 1- Bohr, elektronu hareket halinde yüklü tanecik olarak kabul edip, bir hidrojen
atomundaki elektronun sadece bazı belirli enerjiye sahip olacağını varsayarak teorisini ortaya attı. Bu teori hidrojen gibi tek tek elektronlu He+ , Li+2 iyonlarına da uymasına rağmen, çok elektronlu atomların ayrıntılı spektrumlarının, kimyasal özelliklerini açıklanmasına uymamaktadır. Yine de modern atom modelinin gelişiminde bir basamak teşkil etmiştir.
2- Modern atom teorisini kısaca şu şekilde özetleyebiliriz:
• Atomda belirli bir enerji düzeyi vardır. Elektron ancak bu düzeyden birinde bulunabilir.
• Elektron bir enerji düzeyindeki hareketi sırasında çevreye ışık yaymazlar.
• Atoma iki düzey arasındaki fark kadar enerji verilirse elektron daha yüksek enerji düzeyine geçer
• Atoma verilen enerji kesilirse elektron enerjili düzeyinde kalamaz daha düşük enerji düzeyinden birine geçer. Bu sırada iki düzey arasındaki fark kadar enerjiyi ışık şekline çevreye verir
3- Modern atom modeli dalga mekaniğimdeki gelişmelerin elektronun hareketine uygulanmasına dayanmaktadır. Bu modelin öncüleri Werner Heisenberg ve Erwin Schrödlinger gibi önemli bilim adamlarıdır.
Erwin Schrödlinger (1887–1961) Avusturya’nın Viyana şehrinde doğmuş ve 1939 yılından 1956 yılına kadar İrlanda da çalışmıştır. 1926 yılında henüz İsviçre de çalışırken Heisenberg tarafından ortaya atılıp formüllendirilen kuvantum teorisine alternatif olarak kendi adıyla anılan (Schrödlinger eşitliği ) dalga mekaniği teoremini ortaya atmıştır. Schrödlinger teoremi kısaca elektronların gerek atom içerisinde gerekse moleküllerdeki hareketini dalga cinsinden matematiksel bir şekilde açıkladı. Bu çalışmalarından dolayı 1933 yılında fizik Nobel ödülünü İngiliz fizikçi Paul Dirac ile paylaştı.
Werner Heisenberg (1901 – 1976) Atomların yapısını ve elektron gibi atom altı parçacıkların davranışlarını açıklayan quantum mekaniği teorisinin kurucusu olan bir Alman fizikçidir. 1927 yılında kendi adı il anılan belirsizlik ilkesini ortaya atmıştır.Bu ilkesinde Heisenberg kısaca ”elektron kadar küçük olan bir parçacığın hem pozisyonunu hem de momentumunu kesin olarak bulmak mümkün değildir” demektedir. Bu çalışmalarından dolayı 1932 yılında Nobel fizik ödülü almıştır.
1924 yılında Louis De broglie ışı ve maddenin yapısını dikkate alarak küçük tanecikler bazen dalgaya benzer özellikler gösterebilirler şeklindeki hipotezi elektron demetlerinin bir kristal tarafından X – ışınlarına benzer biçimde saptırılması ve dağılması deneyi ile ispatlandı.
1920’li yıllarda Werner Heisenberg, atomlardan küçük taneciklerin davranışlarını belirlemek için ışığın etkisini inceledi. Bunun sonucunda Heisenberg belirsizlik ilkesi olarak anılan şu neticeyi çıkardı:
“Bir taneciğin nerede olduğu kesin olarak biliniyorsa, aynı anda taneciğin nereden geldiği ve nereye gittiğini kesin olarak bilemeyiz. Benzer şekilde taneciğin nasıl hareket ettiğini biliyorsak onun yerin kesin olarak bilemeyiz”
Buna göre elektronun herhangi bir andaki yeri ve hızı aynı anda kesin olarak bilinmez. Bir taneciğin yerini ve hızını ölçebilmek için o taneciği görmek gerekir. Taneciğin görünmesi de taneciğe ışın dalgası göndermekle olur. Elektron gibi küçük tanecikleri tespit etmek için düşünülen uygun dalga boyundaki ışık, elektronun yerini ve hızını değiştirir. Bu yüzden aynı anda elektronun yeri ve hızı ölçülmez. Bu nedenle de elektronların çekirdek etrafında belirli dairesel yörüngeler izledikleri söylenemez. Yörünge yerine elektronun ( yada elektronların ) çekirdek etrafında bulunma olasılığından söz etmek gerekir.
Modern atom modeli atom yapısı ve davranışlarını diğer atom modellerine göre daha iyi açıklamaktadır. Bu model atom çekirdeği etrafındaki elektronların bulunma olasılığını kuvantum sayıları ve orbitaller ile açıklar.
Kuvantum sayıları bir atomdaki elektronların enerji düzeylerini belirten tam sayılardır. Orbitaller ise elektronun çekirdek etrafında bulunabilecekleri bölgelerdir.
Elektron tanecik olarak düşünüldüğünde; orbital, atom içerisinde elektronun bulunma olasılığı en yüksek bölgeyi simgeler. Elektron maddesel bir dalga olarak düşünüldüğünde ise; orbital elektron yük yoğunluğunun en yüksek olduğu bölgeyi simgeler. Yani, elektron tanecik olarak kabul edildiğinde elektronun belirli bir noktada bulunma olasılığından, dalga olarak kabul edildiğinde ise elektron yük yoğunluğundan söz edilir.

NOT : 1- De Broglie Atom Teorisi :
Bohr’ın atom modeli elektronların yörüngeler arası geçişlerinin mümkün kılan“enerji ( kuantum ) sıçramalarını “ açıklamakta yetersiz kalmaktaydı. Bunun çözümü Fransız fizikçi Prens Victor De Broglie tarafından teklif edilmişti. De Broglie bilinen bazı taneciklerin uygun koşullar altında tıpkı elektromanyetik radyasyonlar gibi bazen de elektromanyetik radyasyonlara uygun şartlarda tıpkı birer tanecik gibi davrana bileceklerini düşünerek elektronlara bir sanal dalganın eşlik ettiğini öne sürerek bir model teklif etti. Bu modele göre farklı elektron yörüngeleri çekirdeğin etrafında kapalı dalga halkaları oluşturmaktaydı.

NOT : 1- Born Heisenberg’ in Atom Teorisi :
Almanyalı kuramsal bir fizikçi olan Born Heisenberg’in ilkesini katlamakla beraber bir takım olasılık ve istatistikî hesaplar neticesinde bir elektronun uzaydaki yerini yaklaşık olarak Born Schrödinger’in dalga mekaniği ile kuvantum teorisi arasında bir bağıntı kurdu. Böylece elektronun uzayın bir noktasında bulunması ihtimalinin hesaplana bilineceğini göstermiş oldu.

Elektronların Dizilimi ve Kimyasal Özellikler

ELEKTRON ALIŞVERİŞİ VE SONUÇLARI:
Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde

Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı. Çünkü her üçünün de en dıştaki katmanları tamamen dolu durumdadır.
1.Katmanda en çok 2 elektron bulunması durumu dublet kuralı, 2. ve 3. katmanlarda en çok 8 elektron bulunması durumu oktet kuralı olarak adlandırılır. Helyum dublet, neon ve argon oktet kuralına uyar. Oktet veya dublet kuralına uyan atomlar kararlı yapıya sahiptir.
Diğer elementler de kararlı yapıya sahip olmak isterler. Bu yüzden elektron alır veya verirler.
Son yörüngesindeki elektron sayısı az olan lityum (3), berilyum (5) gibi elementler elektron verme eğilimindedir.
Oksijen(8), flor(9) elementleri ise elektron almaya yatkındır.
Atomlar elektron alarak veya vererek kararlı yapıya ulaştıklarında artık, iyon olarak adlandırılırlar.
Nötr bir atomun elektron almış veya vermiş haline iyon denir.
Atom elektron alarak kararlı hale geçerse elektron sayısı>proton sayısı olur. Bu tür iyonlara negatif(-) yüklü iyon (anyon)denir.
Atom elektron vererek kararlı hale geçerse elektron sayısı(+)yüklü iyon (katyon)denir.
Atomlar kaybettikleri elektron sayısı kadar +yüklü, kazandıkları elektron sayısı kadar – yüklü olurlar. Not: iyon yükü =proton sayısı- elektron sayısı
Eğer iyon anyonsa sembolün sağ üst kısmına – işareti konur ve aldığı elektron sayısı yazılır. Katyonsa + işareti konur ve sayısı yazılır.Elementlerin Atom Modelleri :

KİMYASAL BAĞLAR

KİMYASAL BAĞLARAtomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır.1-İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman meydana gelir. Tepkimeye giren elementlerden birinin atomları,elektron kaybedip pozitif yüklü iyonlara dönüşürken,diğer elementin atomları elektron kazanıp negatif yüklü iyon oluştururlar. Böylece zıt(artı-eksi) bir şekilde yüklenmiş iyonlar arasındaki elektrostatik çekim kuvveti,söz konusu iyonları bir kristal içinde tutar.2- Kovalent bağlarda elektronlar, bir atomdan diğerine aktarılmaksızın ortaklaşa kullanılır. Tek kovalent bağ,iki atom tarafından bölünmüş yani ortaklaşa kullanılan bir elektron çiftinden ibarettir. Moleküller birbirlerine kovalent bağlarla bağlanmış atomlardan meydana gelir.3-Metalik bağlar, metal ve alaşımlarda bulunur. Metal atomları üç boyutlu bir yapı içinde düzenlenirler. Bu atomların  en dış elektronları, yapının her tarafında serbestçe dolaşır ve atomların birbirlerine bağlanmasını sağlarlar.       1 – İYONİK BAĞ

       Bir metal bir ametalle etkileştiği zaman elektronlar metal atomundan ametal atomuna aktarılır ve bunun sonucunda bir iyonik(veya elektrovalent) bileşik meydana gelir. Atomlardan elektron kaybıyla oluşan pozitif iyonlara katyon denir. Atomların elektron kazanarak oluşturdukları negatif iyonlar da anyon olarak isimlendirilir. Bu iyonlar bir araya getirildiklerinde bir kristal oluşturmak üzere birbirlerini çekerler.

         A gruplarındaki elementlerin bileşikleri çoğu kez elementlerin simgeleri ile birlikte değerlik elektronlarını gösteren noktalar kullanılarak ifade edilir. Değerlik elektronları baş grup(A grubu) elementlerinin kimyasal tepkimelerinde kullanılan elektronlardır.

         Örnek olarak bir sodyum atomu ile bir klor atomu arasındaki tepkimeyi ele alalım. (Şekil 1)

 Sodyum 1A grubunda olup sadece bir değerlik elektronuna sahiptir. Klor atomu ise 7A grubunun bir üyesi olduğundan 7 değerlik elektronuna sahiptir. Bu iki atom arasındaki tepkimede sodyum atomu 1 elektron kaybeder. Sodyum atomunun kaybetmiş olduğu elektron klor atomu tarafından kazanılır.

         Sodyum çekirdeği 11 proton (11+ yük) ve sodyum iyonu da yalnız 10 elektron (bir elektron kaybetmiş oluyor) içerdiğinden sodyum atomunun bir elektron kaybetmesiyle 1+ yüklü sodyum iyonu oluşur. Diğer taraftan,klor çekirdeği 17 proton (17+ yük) ve klor iyonu da 18 elektron (bir elektron kazanılmış oluyor) içerdiğinden klor atomunun bir elektron kazanmasıyla da 1- yüklü bir klorür iyonu meydana  gelir.

Şekil 1 : İyonik Bağ

         Bu tepkimede, sodyum tarafından kaybedilen elektronların toplam sayısı klor tarafından kazanılan elektronların toplam sayısına eşit olmalıdır. Böylece oluşan sodyum iyonlarının sayısı ile meydana gelen klorür iyonlarının sayısı aynı olduğundan NaCl formülü bileşikte bulunan iyonların en basit oranını (1:1) verir.Bu iyonlar bir kristal oluşturmak üzere birbirini çekerler.

         Sodyum klorür kristalinde bir iyonun tümüyle diğer bir iyona ait olduğu söylenemez. Aksine, kristal yapıda her bir sodyum iyonu altı klorür iyonu ile her bir klorür iyonu da altı sodyum iyonu ile çevrilmiştir. Kristal içerisinde iyonların bu şekilde düzenlenmesiyle benzer yüklü iyonların birbirlerini itmeleri, zıt yüklü iyonların birbirlerini çekmeleri tarafından bastırıldığı için net çekim kristalibir arada tutar.

      2 – KOVALENT BAĞ

         Elektronları bağlamak için girilen yarışma, iyon bağında olduğu kadar şiddetli değilse atomların var olan dış elektronlar paylaşılır ve bir ortaklaşma bağı ya da Kovalent Bağ oluşur.        

Ametal atomları etkileştiği zaman kovalent bağlarda bir arada tutulan moleküller oluşur. Bu atomlar elektron çekimi bakımından birbirlerine benzediklerinden, kovalent bağların oluşması sırasında herhangi bir elektron aktarımı olmaz.

         Bunun yerine elektronlar ortaklaşa kullanılırlar. Kovalent bir bağ genellikle iki atom tarafından parçalanmış ters spinli bir elektron çifti içerir.

         Kovalent bağlar yapısına göre ikiye ayrılır:

         2.a -Apolar Kovalent Bağ:

Aynı cins iki ametal atomunun birleşmesiyle oluşur. Apolar kovalent bağa en iyi örneklerden biri, iki oksijen atomunun elektronlarını ortaklaşa kullanarak oluşturdukları  bağıdır. (Şekil 2) Bu bağlarda ortaklaşa kullanılan elektronlar eşit paylaşıldığından dolayı molekülün pozitif veya negatif kutbu yoktur.

 (hidrojen),  (oksijen), (klor)…

Şekil 2 : Apolar Kovalent Bağ

2.b -Polar Kovalent Bağlar:

İki farklı cins atomun bir araya gelmesiyle oluşur. Bu bağlarda ametallerden biri ortaklaşa kullanıldığından dolayı molekülün bir ucu pozitif (+), diğer ucu negatif (-) yüklenir. Suyu oluşturan Hidrojen  ve Oksijen  moleküllerinin son orbitallerindeki elektronların ortak kullanılmasıyla oluşan Polar Kovalent bağ şekil 3’de görülmektedir. (su), , (karbondioksit)…

Şekil 3 : Polar Kovalent Bağ

Şekil 4 :  Molekülü

Örnek olarak iki hidrojen atomundan oluşan bir bağ düşünülebilir. Her bir hidrojen atomu 1s orbitalinde çekirdek etrafında simetrik bir dağılım gösteren tek bir elektrona sahiptir.

İki hidrojen atomu bir kovalent bağ oluşturduğu zaman atomik orbitaller öyle bir şekilde üst üste binerler ki çekirdekler arasındaki bölgede elektron bulutları birbirlerini destekleyip bu bölgedeki elektronun bulunma olasılığını arttırırlar. Pauli dışlama ilkesine göre bağı oluşturan iki elektron mutlaka ters spinli olmalıdır. Bir kovalent bağın kuvveti,pozitif yüklü çekirdek ile bağa ilişkin negatif elektron bulutu arasındaki çekimden gelir.    

   3 – METALİK BAĞLAR

       Metallerin iyonlaşma enerjileri ile elektronegatiflikleri oldukça düşüktür. Bunun sonucu olarak metal atomlarının en dış elektronları nispeten gevşek tutulur. Metalik bir kristalde, en dış elektronları çıkarılmış atomlardan ibaret olan pozitif iyonlar kristal örgüde ilgili yerlerde bulunur ve en dış elektronların örgünün her tarafında serbestçe hareket etmesiyle de kristaldeki atomlar bir arada tutulur. Diğer bir deyişle örgü içersinde dağılan ve kristalin bütününe ait olan elektron bulutu ile pozitif iyonlar arasındaki elektrostatik çekim metalik bağı oluşturmaktadır.

         Bant kuramı bu bağlanma şeklini, tüm kristalin her tarafını kapsayan moleküler orbitaller cinsinden açıklar.

         Metalik katıların çoğunda hareketlidirler. Bunun sonucu olan artı iyonlar,genişlemiş bir üçboyutlu diziliş içinde yer alırlar;ama elektronlar yöresizleşir. Bu maddelerin yüksek ısı, iletkenliği, dayanıklılık, yüksek kaynama noktası, yüksek yoğunluk, renk ve elektrik iletkenliği gibi özelliklerinin bir çoğu, hareketli elktronlardan kaynaklanır. Yalnızca birkaç iyon yığışması şeması uygulanabilir ve X ışını çözümlemesi,metal iyonlarının genişlemiş örgülü yapı içinde kazandığı bağ uzunlukları ve geometrik şekiller konusunda ayrıntılı bilgi sağlar. Basit küp biçimi şekiller, ortada başka bir iyonun bulunduğu küp biçimi şekiller ve altıgen yığışma, en sık rastlanan şekillerdir. Metal alaşımları,erimiş haldeki metallerin karıştırıldıktan sonra dikkatlice soğutulmasıyla elde edilir. Bu yolla oluşan gereçlerin özellikleri bileşenlerinin özelliklerinden genellikle çok farklıdır.

    4 – VAN DER WAALS BAĞLARI

       Kapalı kabuklu iki kararlı molekülde ‘Van Der Waals’ güçleri ve ‘London’ güçleri adı verilen zayıf güçler aracılığıyla etkileşmeye girebilir. İki molekülün elktron bulutları etkileştiğinde zayıf bir itme ortaya çıkar; ‘Van Der Waals gücü’ adı verilen bu dengesizleştirici etkileşme sonucunda,elektron dağılımı kısa süre bozulabilir ve anlık(kalıcı olmayan) bir çift kutup momenti oluşabilir.

Bu geçici çift kutuplar(London güçleri) etkileştiğinde, ‘Van Der Waals’ itmesine alt edebilen küçük çaplı bir dengesizleşme gerçekleşir ve zayıf,kimyasal olmayan  bir bağ oluşur. Bu bağlanma biçimi en çok,kapalı kabuklu ender gaz atomlarının etkileşmelerinde ve küçük moleküllerin düşük sıcaklıklarda birleşimsel bağlanmasında önem taşır. Bu bağ zayıftır (gücü genellikle ortaklaşma bağının binde biri kadardır). Sıvı azot ve helyum gibi düşük sıcaklıklı kriyojenik maddelerin yada bunların daha da düşük sıcaklıktaki kat hallerinin özellikleri, bu tür zayıf etkileşmelerden kaynaklanır.

5 – HİDROJEN BAĞLARI
         Bazı hidrojen içeren bileşiklerde moleküller arası çekim kuvvetleri olağan üstü yüksektir. Bu çekim kuvvetleri, hidrojenin atom çapı küçük ve çok elektronegatif olan elementlere kovalent bağlı olduğu bileşiklerde görülür. Bu bileşiklerde elektronegatif element bağı elektronlarını öyle kuvvetlice çeker ki hidrojen önemli miktarda kısmi + yük kazanır. Aslında,hidrojen elementinin perdeleyici elektronları olmadığından burada hidrojen hemen hemen çıplak bir protondur.

         Bir molekülün hidrojen atomu ve diğer bir molekülün elektronegatif elementinde bulunan paylaşılmamış elektron çifti birbirini çekerek bir hidrojen bağı oluşturur. Her hidrojen atomu küçük boyutlu olduğundan ancak bir hidrojen bağı yapabilir.

         Bir çok ortaklaşma molekülünde bulunan çift kutup momentlerinin etkileşmesinin  yol açtığı zayıf çekim güçleri, kararlılaşmaya ve birleşimsel bağlanmaya neden olabilir.

Su(H O) yada amonyak(NH ) gibi moleküllerdeki hidrojen atomları ikinci bir bileşikte bulunan oksijen yada azot atomlarının üstündeki yalnız elektron çiftleri gibi eksi yüklü bir merkezle etkileşmeye girebilirler. Etkileşme enerjileri,tipik olarak,bir ortaklaşma bağının enerjisinin yalnızca %5’i kadardır;ama bir çok fiziksel ve kimyasal süreç açısından çok önemlidir. Söz gelimi,suyun ve buzun yapısı ‘hidrojen bağı’ denilen bu bağların karışık etkileşmelerin sonucudur. Buz, gerçekte sıcaklığa ve uygulanan basınca bağlı olarak bir çok farklı billur yapısı oluşturur; bu çeşitlilik karmaşık hidrojen bağı şekillerinin farklı biçimlerde düzenlenebilmesinden ileri gelir.

Çoğunlukla biokimyasal sistemlerin yapıları da kısmen hidrojen bağı etkileşmelerinin sonucu olarak belirlenir; bu, DNA’da özellikle belirgindir. Ortaklaşma bağıyla bağlanmış bir çok kutupsal bileşiğin erime ve kaynama noktaları hidrojen bağlarını kırmak için ek enerji gerektiğinden anormal derecede yüksektir.

Kovalent Bağ Ve Özellikleri

Kovalent Bağ: Atomlar arasında, son katmanlarda yer alan elektronlardan bazılarının ortaklaşa kullanılmasıyla oluşan bağa denir.
Kovalent bağ kuran atomlar arasında ortaklaşa kullanılan elektronlar, her iki atomu da dublet ya da oktete ulaştırır. Her iki atoma da iyon diyemeyiz. Çünkü elektron almamış, vermemişlerdir.
Kovalent bağ aynı cins atomlar arasında oluyorsa apolar kovalent bağ adını alır.Örneğin iki
hidrojen atomu elektronlarını ortaklaşa kullanarak aralarında kovalent bağ
oluşturur. Böylece her bir hidrojen atomu helyumun kararlı yapısına ulaşır.Kovalent bağ farklı cins atomlar arasında oluyorsa polar kovalent bağ adını alır. Su molekülünün bağ yapısı
Bir su molekülü iki hidrojen ve bir oksijen atomunun kovalent bağ yapması sonucu oluşur. Hidrojen atomlarından her biri kendi elektronunu oksijen atomunun bir elektronu ile ortaklaşa kullanır. Böylece hidrojen atomları kararlı helyuma benzerken, oksijen atomu da kararlı neona benzer.

Bir su molekülü 2 hidrojen ve 1 oksijen atomundan oluştuğu için, su molekülü H2O şeklinde yazılır.Kovalent bağlı yapılar molekül oluşturur.
Atomlar arasında elektron ortaklaşması veya elektron alışverişi olmazsa kimyasal bağ da olmaz

Bileşikler ve Formülleri

Farklı elementlere ait atomların belirli oranlarda bir araya gelerek bağ yapmasıyla oluşan yeni ve saf maddeye bileşik denir.
Bileşikler kendilerini oluşturan elementlerden tamamen farklı fiziksel ve kimyasal özelliklere sahiptir.
Bileşikler moleküler yapıda olabilecekleri gibi, olmayabilirler de. Örneğin su, su moleküllerinden oluşur. Çünkü suyu oluşturan hidrojen ve oksijen arasında kovalent bağ vardır.( amonyak, karbondioksit, basit şeker, kükürtdioksit gibi.)
Bileşikler moleküler yapıda değilse, bileşiği oluşturan atomlar arasında iyonik bağ vardır. Bu tür bileşiklere iyonik yapılı bileşik denir. İyonlar yığınlar halinde düzgün bir örgü oluşturur.
( kalsiyumoksit, sodyumiyodür gibi.)
Bileşikler içerdikleri elementlere göre adlandırılır. Bileşikleri göstermek için element sembollerini kullanırız. Bunlara formül denir. Bir bileşik formülünde, o bileşiği oluşturan elementlerin sembolleri ve o elementin atomlarından kaç tane olduğu yazılır. Örneğin:
CO de 1 karbon atomu, 2 oksijen atomu,
HCI’de 1 hidrojen atomu, 1 klor atomu,
C H O ‘da 6 karbon, 12 hidrojen, 6 oksijen atomu vardır.

BASİT TEPKİME DENKLEMLERİNİN YAZILMASI VE DENKLEŞTİRİLMESİ

Kimyasal değişmelere ya da kimyasal tepkimelere kimyasal reaksiyon denir. Kimyasal tepkime sırasında değişim geçiren maddelere reaksiyona girenler, yeni oluşan maddelere reaksiyondan çıkanlar denir. Kimyasal tepkimeler de reaksiyona girenler ve çıkanlar bölümünün ortasında ok işareti çizilir. ——–>Kimyasal tepkimeye girenler ——–> kimyasal tepkimeden çıkanlarKimyasal tepkimeler de; reaksiyona giren maddeler ortada bulunan ve ayraç olarak kullandığımız okun soluna, reaksiyondan çıkan yani yeni oluşan madde okun sağına yazılır.Yukarıda ki başlık altında basit tepkime denklemlerinin yazılması ve denkleştirilmesi adına örnek verilecek olursa:)Hidrojen ve oksijen elementlerinin suyun oluşması sırasında iki elementin atomları arasında kimyasal bir tepkime gerçekleşir. Tepkime hidrojen ve oksijen atomları arasında yeni bağlar kurulur ve su molekülleri oluşur.

 

Fiziksel ve Kimyasal Olaylar

Maddenin şekil, yoğunluk, çözünürlük, genleşme, erime ve kaynama noktaları, sıvı, katı ya da gaz hâlde olması gibi özellikleri maddenin fiziksel özellikleridir. Maddenin bu özelliklerinde görülen değişimleri fiziksel değişimdir. Maddenin iç yapısında değişme olmaz. Örneğin demirin, tel levha veya çivi hâline getirilmesi olaylarında demirin şeklinde bir değişim olmuştur. Çivi de, tel de demirin özelliklerini taşır. Suyun donup buz olması ya da ısınıp buharlaşması da fiziksel değişmedir. Çünkü su, katı veya gaz hâle geçerken iç yapısında bir değişme olmamıştır. Su buharı soğutulduğunda tekrar su elde edilebilir. Buz da ısıtıldığında tekrar suya dönüşür.
Fakat demir çivi paslandığında, artık demirin özelliklerini taşımaz. Odun baltayla ikiye kesilse odunun şekli değişir. Fakat odun yakıldığında geriye kalan kül, odunun özelliklerini taşımaz.
Yanma, paslanma, çürüme, ekşime, elektroliz gibi olaylar sonucunda maddenin iç yapısında değişmeler olur, yeni maddeler oluşur.
Maddenin iç yapısı, bileşimi, başka maddeye dönüşebilmesi gibi özelliklere kimyasal özellikler denir. Maddenin kimyasal özelliklerinde meydana gelen değişmeler sonucunda yeni özellikte maddeler oluşur. Kimyasal özelliklerdeki değişmelere kimyasal olay veya kimyasal tepkime denir. Bileşik atomlarını bir arada tutan bağlara kimyasal bağ denir. Kimyasal değişmeler sırasında bu bağlar kopar, yenileri oluşur. Kimyasal olaylar, maddelerin birbirleriyle etkileşmesi sonucu oluşabileceği gibi ısı, elektrik akımı gibi dış etkilerle de oluşabilir. Örneğin demirin havadaki oksijenle birleşmesi sonucu pas oluşurken, suyun elektrik akımıyla elektrolizi sonucu hidrojen ve oksijen gazları açığa çıkar.Kimyasal TepkimelerKimyasal değişmelere ya da kimyasal tepkimelere kimyasal reaksiyonlar da denir. Kimyasal tepkime sırasında değişim geçiren maddelere reaksiyona girenler, yeni oluşan maddelere de reaksiyondan çıkanlar ya da ürünler adı verilir.
Demirin paslanması sırasında havadaki oksijenle demir birleşerek demir oksit denilen pası oluşturur. Burada demir ve oksijen girenler, demir oksit ise çıkan üründür.
Kimyasal tepkimeler sırasında meydana gelen değişiklikler, kimyasal denklemlerle gösterilir.
Kimyasal denklemlerde giren ve çıkan maddeler formüllerle gösterilir. Örneğin kömür yanarken içindeki karbon havadaki oksijenle birleşir ve karbon dioksit gazı açığa çıkar. Bu olaya ilişkin tepkime denklemi şu şekilde yazılır:
C       +        O2 CO2
Kömür Oksijen         Karbon dioksit
Girenler                      Çıkanlar (Ürün)Denklemden de görüldüğü gibi tepkimeye giren ve çıkan maddeler arasına ok konur. Giren maddeler okun sol tarafında, çıkanlar ise sağ tarafında bulunur.
Kimyasal denklemler tepkime hakkında bir çok bilgiyi basit bir şekilde göstermemize yarar. Örneğin; C + O2 CO2 tepkimesi bize 1 karbon atomuyla 2 oksijen atomunun birleşerek 1 karbon dioksit molekülü oluşturduğunu gösterir.Tepkime Çeşitleri
Kimyasal tepkimeler gerçekleşirken bazı maddeler arasında bağlar koparken, bazı maddeler arasında yeni bağlar oluşur. Kimyasal tepkimeler oluş şekline göre sınıflandırılabilir:
1. Sentez (Birleşme) Tepkimeleri:
Element ya da bileşiklerin birleşmesiyle yeni bir madde oluşumuna sentez (birleşme) tepkimesi adı verilir.
Örnek; karbon dioksit ve suyun oluşumu:
C + O2 CO2
2 H2 + O2 2 H2O

2. Analiz (Ayrışma) Tepkimeleri:
Bir bileşik kendini oluşturan daha basit maddelere ayrışıyorsa, buna analiz (ayrışma) tepkimesi adı verilir.
Örnek; suyun ve potasyum kloratın (KClO3) ayrışması:
2 H2O 2 H2 + O2
KClO3 KCl + 3/2O2
3. Yer Değiştirme Tepkimeleri:
Bir element ve bir bileşik arasında ya da iki farklı bileşik arasında oluşan tepkimelerde, atomlar birbiriyle yer değiştirip yeni bileşikler oluşturabilir. Bu tip tepkimelere yer değiştirme tepkimesi adı verilir.
Örneğin magnezyum ile çinko oksit tepkimeye girdiğinde magnezyum oksit ve çinko oluşur.
Mg + ZnO MgO + Zn
Tepkime denkleminde de görüldüğü gibi elementler yer değiştirerek yeni bileşikler oluşturur.

Tepkime Denklemlerinin Denkleştirilmesi
Kimyasal tepkimelere giren maddelerle çıkan maddeleri oluşturan atomların cinsleri ve sayıları aynıdır. Dolayısıyla bir tepkime denkleminin sol ve sağ tarafında aynı cins ve aynı sayıda atom bulunmalıdır. Böyle tepkime denklemlerine denkleştirilmiş tepkime denklemi adı verilir.
Eğer bir tepkime denklemi denk değilse, formül ve sembollerin önüne uygun sayılar yazılarak tepkime denkleştirilir.
Örneğin su, oksijen ve hidrojenin birleşmesiyle oluşur. Fakat oksijen ve hidrojen tek atom hâlinde değil, O2 ve H2 molekülleri şeklinde ve gaz hâlde bulunur. Suyun tepkime denklemini H2 + O2 H2O şeklinde yazarsak denk bir tepkime denklemi yazmış olmayız. Çünkü giren atom sayısı ile çıkan atom sayısı aynı değildir. Girenler tarafında 2 tane O atomu, çıkanlar tarafında ise 1 tane O atomu vardır.
Denklemi denkleştirmek için H2 ve H2O’nun önüne 2 yazalım;
2 H2 + O2 2 H2O
4 adet H               4 adet H
2 adet O               2 adet O
Bu durumda girenler ve çıkanlar denkleşmiş olur.

Örnek:Magnezyum ve oksijen birleşerek Magnezyum oksit (MgO) bileşiğini oluşturur.Bu olayın tepkime denklemini yazın
Örnek: Metanın formülü CH4 olduğuna göre, metan ve oksijen arasındaki kimyasal denklemi yazınız.

Tepkimelerde Kütlenin Korunumu
Bir kimyasal tepkimede, tepkimeye giren maddelerin kütlelerinin toplamı, çıkan maddelerin kütlelerinin toplamına eşittir. Demirin kükürt ile tepkimesinden demir sülfür oluşur. Demir sülfürün tepkime denklemi şu şekildedir.
Fe + S FeS
56   32           88 g
Giren Çıkan
kütle = 56 + 32 = 88 g kütle = 88 g

Örnek: Kalsiyum karbonat ısıtıldığında kalsiyum oksit ve karbon dioksit maddelerine ayrışır.100 g kalsiyum karbonat ayrıştığında 44 g karbon dioksit çıktığına göre, kaç gram kalsiyum oksit oluşur?
 

 
 

 

Karışımlar

 Çözelti: Homojen karışımlara çözelti denir
Homojen karşım: karışımı oluşturan maddelerin karışımın her tarafına eşit olarak dağılmasıyla oluşan karışımdır.
Heterojen karışım: karışımı oluşturan maddelerin karışımın her tarafına eşit olarak dağılmamasıyla oluşan karışımdır.
Çözücü: karşımı oluşturan maddelerden miktarı çok olana denir.
Çözünen: karışımı oluşturan maddelerden miktarı az olana denir.
Seyreltik: bir çözeltide çözünen madde miktarı, diğer bir çözeltide bulunan çözünen madde miktarından daha az ise seyreltik denir.
Derişik: bir çözeltide çözünen madde miktarı diğer bir çözeltide bulunan çözünen madde miktarından daha fazla ise derişik denir.

 iki ve ya da daha fazla maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla karışımlar oluşur. Karışımı oluşturan maddeler, karışımın her tarafına eşit olarak dağılmışsa bu tür karışımlar homojen karışımlardır. Homojen karışımlar çözelti olarak adlandırılır.
Örneğin; çay içine şeker attığımızda, şeker çay içinde çözünür. Şeker karışımın her tarafında eşit oranda bulunduğundan bu karışım homojen karışımdır. Eğer karışımı oluşturan maddeler karışımın her tarafında dağılmamışsa bu tür karışımlar heterojen karışımlardır. Örneğin; toprak heterojen bir karışımdır. Toprağı oluşturan maddeler, toprağın her katmanında aynı oranda olmadığından dolayı bu karışım heterojendir.
Örnek soru: Aşağıda verilen karışımlardan hangisi ya da hangileri homojendir?
I. Kolonya
II. Portakal suyu
III. Bal
A) Yalnız II B) I ve II C) I ve III D) II ve IIIÇözünen maddelerin tanecikleri, çözücü yüzünden birbirinden ayrılır. Çözücü ve çözünen maddelerin birbiri içinde iyonlarına ve moleküllerine ayrılmasına çözünme denir. Örneğin; tuz, suya atılmadan önce, tuzu oluşturan atomlar birbiriyle sıkı bir şekilde dizilmiştir. Tuz suya eklenince, suyu oluşturan moleküller, tuzu oluşturan atomlar birbirinden ayrılır. Eğer tuz yerine şeker kullanılırsa, şeker moleküler yapılı bir bileşik olduğundan moleküllerine kadar ayrılır.

Çözünme hızına etki eden faktörler


• Bir çözünmenin daha hızlı gerçekleşmesi için neler yapmamız gerekir?
• Küp şeker mi yoksa toz şeker mi su dolu bardakta daha hızlı çözünür?

Su dolu bir bardağa bir küp şeker attığımızda, şeker su içinde çözünmeye başlar. Eğer küp şekeri parçalayıp toz halinde su içine atarsak çözünme çok daha hızlı gerçekleşir. Suyun sıcaklığı arttırıldığında çözünme hızı da artar.

Çözeltiler içerdikleri çözünen madde miktarlarına göre seyreltik ve derişik olarak ayrılabilirler. Bir çözeltide çözünen madde miktarı, diğer çözeltide bulunan çözünen madde miktarından daha az ise seyreltik, fazla ise derişiktir.

Örnek soru: Aşağıda verilen çözeltileri derişikten, seyreltiğe doğru sıralayınız.
I. içinde 10 g tuz bulunan çorba
II. içinde 5 g tuz bulunan çorba
III. içinde 20 g tuz bulunan çorba
IV. içinde 15 g tuz bulunan çorba

Örnek soru: çözündüğü zaman iyonlarına ayrılan iyonik bileşiklerin suda çözünmeleri ile oluşan çözeltilere elektrolit çözelti denir. Bu tür çözeltiler elektriği iletirler. Buna göre aşağıda verilen çözeltilerden hangisi ya da hangileri elektrik iletimi sağlar?
I. tuzlu su
II. şekerli su
III. limonlu su
A) Yalnız II B) I ve II C) I ve III D) II ve III

Karışımlar (Konu Anlatımı)

Birden çok maddenin kimyasal bağ oluşturma-dan bir arada bulunmasıyla meydana gelen mad-delere karışım denir.
 Karışımlar görünümlerine göre iki çeşittir:
 
 1-Heterojen Karışımlar (Adi Karışımlar): Karışımı oluşturan maddeler karışımın her tarafına eşit miktarlarda dağılmaz.
 Örnek: (tebeşir tozu+ su), (zeytinyağ+su)
 Süt, ayran, toprak, beton, sis….
 A- Süspansiyon (katı- sıvı)
 Bir katının sıvı içerisinde çözünmeyip, parçacıklar (asılı)halinde kalmasıyla oluşan karışımlardır. Ör-nek: ayran, pişmiş türk kahvesi, çamurlu su, te-beşirli su, hoşaf, taze sıkılmış meyve suyu, kan.
 B- Emülsiyon (sıvı- sıvı)
 Bir sıvının başka bir sıvı içerisinde çözünmeden kalmasıyla oluşan karışımlardır. Örnek: zeytinyağ-su, benzin-su, süt…
 C- Aerosol (sıvı- gaz)
 Bir sıvının gaz ile oluşturduğu heterojen karışım-lardır. Örnek: deodorantlar, sis, spreyler…
 Heterojen Karışımların Özellikleri:
 1- Heterojen özellik gösterirler.
 2- Bulanık görünürler.
 3- Dipte çökelti oluştururlar.
 4- Genellikle tanecikleri gözle görülür.
 5- Fiziksel yolla (süzme) ayrılırlar.
 
 2-Homojen Karışımlar (Çözeltiler): Karışımı oluşturan maddeler, karışımın her tarafına eşit olarak dağılmışlardır.
 Örnek: bronz, çelik, sirke, hava, tuzlusu
 Çözeltiler fiziksel hallerine bağlı olarak katı, sıvı veya gaz halde bulunabilirler.
 A- Katı-Katı çözeltiler:
 Alaşımlar =metal+metal
 B- Sıvı çözeltiler:
 Sıvı- Katı: burun damlası, şerbet
 Sıvı- Sıvı: kolonya, sirke
 Sıvı- Gaz: gazoz, deniz suyu
 C- Gaz çözeltiler:
 Gaz- gaz çözeltiler= hava, doğalgaz…
 Homojen Karışımların Özellikleri
 1- Homojendirler
 2- Dipte çökelti oluşturmazlar.
 3- Berrak görünüşlüdürler.
 4- Tanecikleri gözle görülmez.
 5- Süzme ile ayrılmazlar.
 6- Belirli erime, kaynama noktaları yoktur. Çözünen madde miktarı arttıkça kaynama nok. yükselir, donma nok. azalır.
 
 ÇÖZELTİLER (HOMOJEN KARIŞIMLAR)
 Çözeltiler iki kısımdan oluşur:
 
 Çözücü madde Çözünen madde
 (katı,sıvı,gaz (sıvıdır: su, alkol, eter, olabilir.) tiner, benzin vb.)
 
 Su + Tuz………..Tuzlusu
 
 Çözen ve çözünen madde miktarına göre çözeltiler :
 1- Seyreltik Çözelti: Bir başka çözeltiye göre; Çözünen madde miktarı az, çözen madde miktarı ( çözücü) fazla olan çözeltilerdir.
 (Ör: 100gr su+ 1 gr şeker çözeltisi, 100gr su+ 10 gr şeker çözeltisine göre seyreltiktir.)
 2-Derişik Çözelti: Bir başka çözeltiye göre; Çözünen madde miktarı fazla, çözücüsü az olan çözeltilerdir.
 (Ör: 100gr su+ 15 gr şeker çözeltisi, 100gr su+ 5 gr şeker çözeltisine göre derişiktir.)
 Seyreltik çözeltiler derişik hale getirilebilir. Bu-nun için:
 Çözücü (sıvı) buharlaştırılır
 Çözünen eklenir
 Çözelti soğutulur
 Derişik çözeltileri seyreltik hale getirmek için;
 Çözücü eklenir.
 
 Çözünebilen madde miktarına göre çözeltiler:
 1- Doymuş Çözelti: Belli bir sıcaklıkta çözebileceği kadar çözüneni içeren çözeltilerdir.
 2- Doymamış Çözelti: Belli bir sıcaklıkta, çözebileceğinden daha az çözünen içeren çözeltilerdir.
 3- Aşırı Doymuş Çözelti: Çözebileceğinden da-ha fazla madde bulunduran çözeltilerdir.(heterojen görünürler.)
 
 Elektrik akımını iletmelerine göre çözeltiler:
 1-İletken (elektrolit) Çözeltiler: İçerisinde + ve — yüklü iyon bulunduran çözeltiler elektrik akımını iletir. Ör: sirkeli, asitli, tuzlu, limonlu su
 2- İletken olmayan ( Elektrolit olmayan) Çözelti: İçerisinde moleküller bulunur. İyon
 yoktur. Bu yüzden iletken değildir. Ör: alkollü su, şekerli su, üre, kolonyalı su, safsu.)
 
 ÇÖZÜNÜRLÜK
 Belli sıcaklıkta ve basınçta 100gr çözücü içinde çözünebilen maksimum madde miktarına çözünürlük denir. Çözünürlük, katı, sıvı, gaz maddeler için ayırt edici bir özelliktir.
 Çözünürlüğe Etki Eden Faktörler:
 1- Basınç: Gazların çözünürlüğü basınç arttıkça artar. Basınç, katı ve sıvılarda çözünürlüğe etki etmez.
 2- Sıcaklık: Katı ve sıvılarda çözünürlük, sıcaklıkla doğru orantılıdır. Gazlarda ters orantılıdır.Örneğin Karadeniz de oksijen miktarı akdenizden daha çoktur.çünkü deniz suyu soğuktur.
 3- Çözücü türü: Örneğin tuz suda çözünürken, yağda çözünmez. Şeker suda çözünürken, alkolde çözün-mez.
 Çözünürlük Hızına etki Eden Faktörler: Çözünürlük hızı;
 1- Sıcaklık: Sıcaklıkla doğru orantılıdır.
 2- Çözünenin temas yüzeyini artırırsak artar.
 3- Karıştırma, çalkalama ile doğru orantılıdır.
 4- Çözünen cinsi (Tuz ve şeker su içinde farklı hızlarda çözünür.)
 
 
 Çözünürlük= Madde miktarı/100 ml
 
 ELEMENT, BİLEŞİK VE KARIŞIMLARIN KARŞILAŞTIRILMASI
 
 
 ELEMENT
 Saf maddelerdir.
 Kendine özgü öz kütlesi vardır.
 Fiziksel veya kimyasal yöntemlerle basit maddelere ayrışmaz.
 Homojendir.
 Kendilerine özgü E.N, K.N vardır.
 Yapıtaşı atomdur.
 Aynı cins atomlardan oluşur.
 Sembolle gösterilir.
 
 BİLEŞİK
 Saf maddelerdir.
 Kendine özgü öz kütlesi vardır.
 Kimyasal yöntemlerle ayrışır. (elektroliz, ısıtma)
 Homojendir.
 Kendilerine özgü E.N, K.N vardır.
 Yapıtaşı moleküldür.
 Farklı cins atom, aynı cins moleküllerden oluşur.
 Formüllerle gösterilir.
 Elementlerin sabit oranlarda birleşmesiyle oluşur.
 Elementler özelliklerini kaybeder.
 
 
 
 KARIŞIM
 Saf değillerdir.
 Sabit öz kütlesi yoktur.
 Fiziksel yöntemlerle ayrışır. (süzme, eleme,damıtma)
 Homojen veya heterojendir.
 EN, KN belirgin değildir.
 Yapıtaşı atom veya molekül-dür.
 Farklı cins atom ve moleküller-den oluşur.
 Belli formülleri yoktur.
 Karışımı oluşturan maddeler arasında belirli oran yoktur. Her oranda karışabilirler.
 
 Karışımı oluşturan maddeler özelliklerini kaybetmezler.

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Connecting to %s

Takip Et

Her yeni yazı için posta kutunuza gönderim alın.

%d blogcu bunu beğendi: